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A B S T R A C T   

Multicolor flow cytometry is an essential tool for studying the immune system in health and disease, allowing 
users to extract longitudinal multiparametric data from patient samples. The process is complicated by sub
stantial variation in performance between each flow cytometry instrument, and analytical errors are therefore 
common. Here, we present an approach to overcome such limitations by applying a systematic workflow for 
pairing colors to markers optimized for the equipment intended to run the experiments. The workflow is 
exemplified by the design of four comprehensive flow cytometry panels for patients with hematological cancer. 
Methods for quality control, titration of antibodies, compensation, and staining of cells for obtaining optimal 
results are also addressed. Finally, to handle the large amounts of data generated by multicolor flow cytometry, 
unsupervised clustering techniques are used to identify significant subpopulations not detected by conventional 
sequential gating.   

1. Introduction 

There are many occasions where it is important to examine the 
composition of immune cells in our body. For example, to correctly di
agnose, characterize disease stages, or detect changes associated with 
disease or therapies. One way of achieving this is by flow cytometry, 
which measures scattered light from fluorescent-labeled antibodies that 
bind to specific cellular markers to determine frequencies of defined cell 
types [1,2]. The technology has been in use since the 1960s, and even 
though the general principles of the technology have not changed much, 
its application and complexity have vastly increased and now allows us 
to retrieve high dimensional data in parallel from a broad range of 
different cell types [3]. With the increased complexity, follows the need 
for a systematic approach for designing flow cytometry panels. 

The performance of flow cytometers varies [4], even within models 
with similar laser- and filter configuration. To generate the most accu
rate results from flow cytometry experiments, the user must optimize 
panels to function with the specific machines intended to run the ex
periments. Thus, the choice of fluorescent labels for specific markers 

depends on both the instrument’s capacity and setup and the antibody 
affinity and biological expression of the investigated markers. Adapting 
instruments to use existing panels, in order to perform comparable ex
periments at different laboratories, is also possible but requires rigorous 
control procedures to validate inter-assay variability, which might not 
be feasible for smaller or highly dynamic research environments. 

We here describe a systematic approach to designing multicolor flow 
cytometry panels (Table 1) and provide a use case with examples of four 
comprehensive and complementary panels that cover some of the most 
important immune cell subtypes and their functional state in patients 
with cancer or autoimmune disorders. The workflow and principles 
described can be used to build and optimize research panels suitable for 
your own specific needs and available instruments. 

1.1. Matching markers with colors 

In order to build robust flow cytometry panels with as many colors as 
possible, while avoiding issues with spectral overlap, excessive 
compensation, or unfavorable loss of resolution, panels should be 
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designed by using a spillover spreading matrix (SSM) generated from the 
FACS machine intended to run the experiments (Fig. 1) [5]. The SSM is 
used to ensure that fluorochromes with significant spectral overlap do 
not associate with markers expressed on the same cell type unless the 
marker’s expression (and thus its fluorescence intensity) with over
lapping color is expected to be low. The staining indexes for the indi
vidual fluorochromes obtained from the SSM make sure that dim colors 
are used for highly expressed markers and vice versa. That way, colors 
with the best separation between positive and negative populations can 
be reserved for markers that are more difficult to detect due to low 
expression or poor antibody affinity while avoiding loss of resolution 
due to spectral overlap. 

Determining the expected antigen density for markers included in 
the flow cytometry panel, or if they are co-expressed on a particular cell 
type, can be challenging. Researchers often rely on experience from 
previous experiments involving the marker in question, and their 
theoretical knowledge, for determining the expected antigen density. 
Reviewing the scientific literature to understand the dynamics of the 
involved markers is therefore paramount before designing experiments. 
Researchers can also find information on marker expression, antigen 

density, and antibody affinity for various clones among the technical 
description of antibodies at the manufacturers’ websites. After colors 
have been matched with markers and antibody clones selected, each 
batch of purchased antibodies should be tested to verify their binding to 
antigens and titrated to determine which concentration generates the 
best possible separation while maintaining the lowest level of unspecific 
background signal. When antibodies have been successfully titrated, the 
full panels are tested on healthy donor or patient material, depending on 
sample availability. Maintaining an agile workflow is essential, so that 
initial smaller experiments can inform panel adjustments if necessary. 

1.2. Compensation 

Flow cytometry panels using multiple fluorochromes always require 
a compensation matrix to be calculated and applied before experiments 
can be run. If the spectral overlap is too high and the separation of 
positive and negative cell populations is low, the machine might not 
correctly distinguish overlapping colors from one another. High 
compensation values will then create a spreading error resulting in loss 
of resolution and poor sensitivity for detecting the affected markers. 

Table 1 
Overview of flow cytometry panel design.  

Panel design steps 

Choosing markers Choose subpopulations of interest, e.g. effector and memory T cells. (Table 2) 
Define lineage markers for the subpopulations, e.g. CD3, CD8, CCR7, CD45RA. Add functional markers, e.g. PD-1, CTLA-4, CD69. (Fig. 2) 
Annotate the expected antigen density of the markers included, e.g. low, medium, high, very high. (Fig. 1) 
Investigate which subpopulations that co-express the same markers. (Fig. 2) 

FACS machine Know your machine. Which colors can be used with the current laser and filter setup, and can it be optimized? (Suppl. figure 1) 
Record single stained beads to create a spillover spread matrix (SSM). 
The calculated SSM show how colors overlap and quantifies their brightness, or stain index. (Fig. 1) 

Match colors to markers Place markers next to colors in the SSM in a spreadsheet, so that co-expressed markers are not represented by colors with large spectral  
overlap. (Fig. 1) 
Bright colors (with large stain index) are reserved for poorly expressed antigens and vice versa. 

Test and optimize Decide which clones to use for the antibodies, if multiple options are available. 
Test antibodies and titrate to the concentration generating the largest spread with lowest amount of background. (Fig. 3) 
Specific cell lines, or cell stimulation, might be needed to generate a positive signal when antibodies are tested. (Fig. 3) 
Stain cells with the full panel and evaluate. Make changes if necessary. 

Using the panels Create compensation with single stained beads or cells. Make sure the compensation generates satisfactory results on stained cells. It should be used for  
all your experiments intended for comparison. 
Be aware that application settings and PMT values should not change following compensation. 
Either use manual sequential gating for analyzing flow cytometry data (Figs. 4, 6, 8 and 10), or unsupervised clustering methods for exploratory  
purposes (Fig. 12).  

Fig. 1. Example of panel design using a SSM. Stain index of the fluorochromes, obtained when creating the SSM, is plotted together with the expression level of the 
markers of interest. Markers can then be moved around to visualize how panel changes will affect the resolution of a marker, if two fluorochromes are attached to the 
same cell. High numbers in the SSM indicate high degree of spectral overlap between two colors, while a high stain index for a fluorochrome indicate a bright color 
that might be suitable for a poorly expressed marker. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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Compensation is most commonly done by making single stained control 
beads for each of the antibodies used and acquiring them one by one in 
the FACS machine. For all tandem dyes (such as BV650 or PE-Cy5) the 
same antibody batch should be used for compensation measures, as will 
be used for your planned experiment, as variations in the conjugation 
between the covalently bound fluorescent molecules can affect the 
spectral properties. For the non-tandem dyes (e.g., PE, APC, or BV421), 
an antibody with the same fluorochrome can be used for compensation. 

Before acquiring the unstained negative control and single stained 
controls, photomultiplier tube (PMT) values, or voltages, should be set 
for the detectors assigned to the fluorochromes used. These values are 
often automatically optimized when baseline settings are determined 
but should be confirmed during compensation. An optimal PMT value is 
the minimum value required to generate the largest separation between 
negative and positive populations. Low values reduce detection of dim 
antigens, while too high values can push positive signals off scale and 
increase the spectral overlap among detection channels. An effective 
way to ensure the optimal voltage is to quickly run through all single 
stained controls while increasing the PMT values until the largest sep
aration between negative and positive populations is reached. If the 
distance does not increase, then the PMT value is decreased until the 
lowest PMT value generating the largest separation is reached. 
Following PMT adjustment and acquisition of compensation controls, 
the compensation is calculated using available flow cytometry software, 
such as FACSdiva™ or FlowJo™. Settings on the machine must remain 
the same during compensation as for the later experiments. 

1.3. Quality control 

To reduce inter-experiment variability, which is a topic of frequent 
debate [6–9], the same compensation, PMT values, and application 
settings, can be applied to all experiments intended for comparison. It is 
also crucial to perform daily calibrations using beads with multiple 
spectral peaks, e.g., the Cytometer Setup and Tracking (CS&T) system in 
machines from Becton Dickinson (BD), and to rigorously clean and rinse 
the flow cell before each experiment. Stained capture beads, or 
well-known cell lines, can be included as quality controls for each 
experiment session to detect variations in spectral overlap or fluorescent 
intensity over time. It is also important to prepare pre-made batches of 
antibody mixes to reduce pre-analytic errors due to slight variations in 
antibody volumes. A way of reducing the risk of inter-experiment vari
ation is to plan experiments so that as many samples as possible are 
stained and analyzed simultaneously and by the same person. However, 
one should be aware that splitting samples up in a non-randomized 
fashion, e.g., analyzing responding patients and non-responders in 
separate experiments can introduce significant bias. If experiments are 
to be performed at multiple laboratory sites, using more than one FACS 
machine, or if the experiments are performed in a regulated or clinical 
environment, then a strict validation process should take place in order 
to document that the assay precision is within 10–25% CV (coefficient of 
variation) [10]. 

2. Result 

2.1. Use case – immune monitoring using flow cytometry 

We designed multicolor flow cytometry panels to monitor patients 
with high risk myelodysplastic syndrome (MDS), a malignant disease of 
the bone marrow, treated with a novel immunotherapy drug. Relevant 
markers were identified to distinguish important immune cell subtypes 
and markers associated with increased immune activation and inhibi
tion (Table 2). Using a SSM table generated on our BD LSR Fortessa™, 
the selected markers could be split between four panels, each with a 
distinct thematic purpose. Bright colors were matched with dim anti
gens, and colors with significant overlap were avoided for markers that 
were known to be co-expressed on the same cell types (Fig. 1). 

The first panel focuses on memory and effector subtypes of CD4 and 
CD8 cells and their expression of markers related to their activation 
state. The second panel examines inhibitory markers on CD4 and CD8 
cells and the presence of regulatory T cells. The third was designed to 
determine the composition of myeloid cells, including MDSC, DC, 
monocytes, and CD34+ hematopoietic stem cells. The fourth panel 
included markers for B cells, NK cells, NK T, cells and their activation 
status. In all panels, except for the myeloid one, we used a common 
backbone of CD3, CD4, and CD8 antibodies. See Fig. 2 for a schematic 
overview of the subpopulations investigated in each panel. 

Each antibody was then stepwise titrated to the concentration 
generating the best separation between positive and negative pop
ulations and the lowest background signal. To ensure that antibodies 
were titrated on the correct type of immune cell, the cells were pre- 
stained with viability dye and lineage markers (CD3, CD16, CD56). 
Markers associated with immune activation or exhaustion (e.g., CD39, 
CD69, CD137, PD-1, CTLA-4, LAG-3, TIM-3) may require in vitro acti
vation of the given cell types (here T cells) before staining to secure a 
positive signal. We stimulated peripheral blood mononuclear cells 
(PBMC) from healthy donors (HD) for two days with PHA-L (5 μl/ml) 
and then ran the titration experiments on both stimulated and non- 

Table 2 
Overview of the four panels.  

Phenotype/Activation Treg/Inhibitory 

Description Marker Color Description Marker Color 

T lineage CD3 FITC T lineage CD3 FITC 
T lineage CD4 BUV395 T lineage CD4 BUV395 
T lineage CD8 BV480 T lineage CD8 BV480 
Memory/ 

Effector 
CD45RA BV421 Memory/ 

Effector 
CD45RA BV421 

Memory/ 
Effector 

CCR7 APC Memory/ 
Effector 

CCR7 APC 

Co-stim 
(lineage) 

CD28 BUV737 Treg lineage CD25 BV711 

Chemokine CXCR3 BV711 Treg lineage CD127 APC- 
R700 

Th lineage CCR4 PE Exhaustion CTLA4 PE-Cy5 
Th lineage CCR6 BV650 Exhaustion TIM-3 PE-Cy7 
Activation 

(early) 
CD39 BV786 Exhaustion LAG-3 BV650 

Activation 
(early) 

CD69 PE-Cy7 Exhaustion PD-1 PE- 
CF594 

Activation 
(later) 

CD137 PE-Cy5 Treg lineage FoxP3 
(IC) 

PE 

Exhaustion PD-1 PE- 
CF594 

Proliferation Ki67 (IC) BV786 

Viability Live/ 
dead 

Near-IR Viability Live/dead Near-IR 

Myeloid/Blast NK/NKT 

Description Marker Color Description Marker Color 

T lineage CD3 FITC T lineage CD3 FITC 
B lineage CD19 FITC T lineage CD4 BUV395 
Blast cells CD34 BV711 T lineage CD8 BV480 
Myeloid 

lineage 
CD11b PE-Cy7 B lineage CD19 BV650 

Myeloid 
lineage 

CD33 BUV395 NK activation CD45RO BV786 

Myeloid 
lineage 

CD14 BV480 NK activation CD45RA BV421 

Myeloid 
lineage 

CD15 BV786 NK lineage CD16 APC 

Myeloid 
lineage 

CD16 APC NK lineage CD56 PE- 
CF594 

MHC class II HLA-DR BV421 NK activation CD38 BUV737 
mDC lineage CD11c PE NK activation CD69 PE-Cy7 
pDC lineage CD123 BV650 NK activation CD107a PE-Cy5 
Exhaustion 

(tumor) 
PD-L1 PE- 

CF594 
NKT cells CD1d 

tetramer 
PE 

Viability Live/ 
dead 

Near-IR Viability Live/dead Near-IR  
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stimulated cells before selecting the appropriate antibody concentration 
(Fig. 3). 

2.2. Phenotype panel 

When working with cancer immunology, T cells are of major interest. 
CD8 T cells can recognize and kill cancerous cells by detecting altered 
peptide fragments bound to HLA class I molecules on cancer cells’ sur
face [11]. CD4 T cells represent helper T cells (Th) and serve to orchestra 
the immune response. 

CD8 and CD4 T cells are characterized into being memory or effector 
phenotype using CD45RA and CCR7. Terminal effector cells (TE) are 
CD45RA+ CCR7-, central memory (CM) CD45RA− CCR7+, effector 
memory (EM) CD45RA− CCR7-, while naive T cells are CD45RA+ CCR7+

[4]. CD8 cells can be further subdivided using CD28 and CXCR3 into a 
memory stem cell (SCM) population [12,13], that is CD45RA+ CCR7+

CD28+ CXCR3+, and a transient memory cell (TM) population that is 
CD45RA− CCR7- CD28+ CXCR3+ [12]. CD4 cells are also divided into 
their helper T cell class. In this case, Th1, Th2, and Th17 cells using 
CXCR3, CCR4, and CCR6. Th1 is CXCR3+ CCR4- CCR6-, Th2 CXCR3- 

CCR4+ CCR6-, and Th17 CXCR3- CCR4+ CCR6+ (Fig. 4) [14]. 
To evaluate the T cells’ activation status, we included three markers 

associated with T cell activation (CD39, CD69, and CD137) and one 
inhibitory immune checkpoint (PD-1). CD39 is a marker expressed on 
the surface of activated T cells following recent antigen recognition. In 
the tumor microenvironment, these markers are reported to identify 
populations of tumor-specific CD4 and CD8 cells in cancer patients [15, 

16]. CD69, also a marker associated with activation of T cells and NK 
cells, that is detectable within 30–60 min after the cell has been acti
vated, and then declines rapidly after 4–6 h [17,18]. CD137 is a mole
cule with costimulatory functions that is upregulated on T cells in 
response to activation, and it has also been described to identify 
tumor-reactive T cells in patients [19]. PD-1 is a classic immune 
checkpoint with inhibitory functions that can be blocked for therapeutic 
T cell activation in cancer immunotherapy. It gets upregulated when T 
cells are activated and can signal that a cell is reaching immune 
exhaustion [20]. 

A representative example of cells from bone marrow aspirates and 
PBMC from a patient with high-risk MDS, and PBMC from a HD, stained 
with the phenotype panel (Fig. 5), showed that the composition of 
memory and effector CD8 and CD4 T cells did not differ much between 
the bone marrow and peripheral blood samples in the MDS patient. 
Large differences were, however, seen when comparing the MDS sam
ples to the healthy donor. In this example, the MDS patient had around 
50% CD8 TE cells, compared to 11% in the HD, and 10% CD8 CM cells 
compared to 39% in the HD. T cells in the MDS patients’ bone marrow 
expressed a higher level of activation markers, especially CD69, 
compared to T cells in the peripheral blood. 

2.2.1. Characterization of antigen reactive T cells 
Adaptations of the phenotype panel were developed to combine 

phenotyping with detection of specific antigen reactive T cells, either by 
detection of cytokine secretion following antigen stimulation or by 
staining T cell receptor specificities by using fluorescent-labeled MHC 

Fig. 2. Schematic overview of gating for (a) Phenotype panel, (b) Treg panel, (c) Myeloid panel, and (c) NK panel. Naive = Naive cell. CM = Central memory cell. 
EM = Effector memory cell. TE = Terminal effector cell. SCM = Memory stem cell. TM = Transient memory cell. Th = T helper cells. Treg = Regulatory T cell. G- 
MDSC = granulocytic myeloid derived suppressor cell. M-MDSC = Monocytic myeloid derived suppressor cell. mDC = Myeloid dendritic cell. pDC = plasmacytoid 
dendritic cell. NK = Natural killer cell. NKT = Natural killer T cell. 
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tetramers. To combine phenotyping with intracellular cytokine staining, 
the antibodies for CXCR3, CCR4, and CCR6 were replaced with anti
bodies binding IFN-γ, TNF-α, and the degranulation marker CD107a, 
and added following in-vitro stimulation with specific immunogenic 

peptides. When phenotyping was combined with MHC tetramer stain
ing, peptides were loaded to tetramerized MHC molecules carrying a 
fluorescent label. The tetramers were then added to the cells in order to 
stain specific peptide-MHC reactive T cells. 

Fig. 3. Antibody titration experiment with decreasing antibody concentration for three markers associated with T cell exhaustion. Non-stimulated PBMC compared 
with PBMC stimulated with PHA-L for two days. CTLA-4 (left) and TIM-3 (middle) are here only stainable when the cells are activated, and stimulation is therefore 
necessary for choosing the right antibody concentration. PD-1 (right) expression is also increased when cells are stimulated, which facilitates selection of the correct 
antibody concentration. 

Fig. 4. Phenotype panel gated on PBMC from a patient with MDS. PD-1, CD39, CD69, and CD137 is measured on all subpopulations.  
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Fig. 5. Barplot showing frequency of subpopulations in (a) CD4 and (b) CD8 T cells. Expression of functional markers as expressed by percentage of positive cells 
relative to its parent population. Red and orange bars are bone marrow and PBMC from a patient with MDS, while blue bars are PBMC from a healthy donor. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 6. Treg panel gated on PBMC from a patient with MDS. Gating steps prior to the gating of CD4 and CD8 cells are the same as in the phenotype panel. PD-1, 
CTLA-4, LAG-3, TIM-3 and Ki67 is measured on all subpopulations. 
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2.3. Regulatory T cell panel 

Regulatory T cells (Treg) are important mediators of immune sup
pression. In cancer, Tregs are often enriched in the tumor microenvi
ronment, and increased numbers correspond with poorer clinical 
outcome [21]. 

In the regulatory T cell panel, the frequency of Tregs was determined 
as CD4 cells expressing CD25hi, CD127lo and FoxP3+ (Fig. 6) [22]. 
FoxP3 is a transcription factor requiring permeabilization of both the 
cell membrane and nucleus before staining. Several functional markers 
were included in the panel to measure immune exhaustion and 

suppressive potential of the Tregs. Ki67 is strictly expressed during cell 
division and hence marks proliferative cells [23]. Proliferation is a 
hallmark for naïve and memory T cells upon meeting their antigen. 
PD-1,20 CTLA-4,20 LAG-3 [24], and TIM-3 [24] are all important 
inhibitory molecules associated with exhausted immune cells and sup
pressive immune function in cancer and autoimmune disease. Markers 
associated with memory and effector cells, CD45RA and CCR7, were 
included, as well as CD8, so that inhibitory markers could be detected on 
both CD4 and CD8 subsets. 

In our example, where we stained bone marrow and PBMC from a 
patient with high-risk MDS compared with PBMC from a HD, 4% of CD4 

Fig. 7. Barplot showing (a) frequency of FoxP3 positive Tregs, expression of functional markers on CD4 cells and Tregs, and expression of functional markers on (b) 
CD8 cells. Red and orange bars are bone marrow and PBMC from a patient with MDS, while blue bars are PBMC from a healthy donor. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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cells were Tregs in the MDS PBMC samples, compared to 2.5% in the HD, 
and only 0.5% in the bone marrow of the MDS patient. However, the 
bone marrow Tregs were more proliferative with higher Ki67 values and 
showed a more suppressive phenotype with higher expression of CTLA- 
4, PD-1, and TIM-3 (Fig. 7). The bone marrow Tregs were also less naïve 
compared to the PBMCs, with a predominance of EM phenotype. 

2.4. Myeloid panel 

In the myeloid panel, markers for distinguishing monocytes, den
dritic cells (DCs), and myeloid derived suppressor cells (MDSCs) were 
included (Fig. 8). Monocytes and dendritic are antigen-presenting cells 
that prime T cells by presenting peptide fragments of tumor-associated 
antigens on their HLA class I and II molecules [25,26]. MDSCs, on the 
other hand, suppress immune responses in the tumor microenvironment 
and promote tumor progression [27]. 

The myeloid subsets are all lin− (CD3− CD19− ). MDSCs can either be 
monocytic (M-MDSC) or granulocytic (G-MDSC). M-MDSC are HLA-DR+

CD11b+ CD33+/hi CD14+ CD15− and G-MDSC HLA-DR+ CD11b+

CD33+/lo CD14− CD15+ [27]. DCs are all HLA-DR+ and are divided into 
myeloid DC (mDC - CD14− CD16− CD11b+ CD33+ CD11c+), plasma
cytoid DC (pDC CD14− CD16− CD11b− CD33− CD123+), and CD14+ DC 
(CD14+ CD11c+) [25]. Furthermore, monocytes express CD11b and 
HLA-DR, and can be subdivided by their expression of CD14 and CD16. 
Classical monocytes are CD14++ CD16− , intermediate CD14++ CD16+, 
and non-classical monocytes CD14lo CD16+ [26]. 

PD-L1, a suppressive marker expressed on tumor cells and in the 
tumor microenvironment, was included and measured on the myeloid 
cells [20]. CD34 allowed for quantification of hematopoietic stem cells, 
which in MDS often is associated with malignant cells [28]. Staining of 
bone marrow and PBMC from a patient with MDS, compared to HD 
PBMC, using the myeloid panel showed 10% CD34 hematopoietic stem 
cells in the bone marrow of the MDS patient, compared to less than 1% 
in the PBMC, which is expected in this disease (Fig. 9). M-MDSCs were 

recorded at similar frequencies in all samples (3.5–5%), but G-MDSCs 
showed a higher frequency in the PBMC of the MDS patient, compared to 
the bone marrow sample and the HD (8% of HLA-DR negative cells in the 
PBMC of the MDS patient, compared to 0% in the BM sample and HD). 
When looking at the expression of PD-L1 on the various subpopulations, 
we found elevated expression in the MDS patient, especially on the 
classical and intermediate monocytes, in the bone marrow. It is worth 
noting that the percentage of PD-L1 positive cells is higher on monocytes 
in the bone marrow than on the CD34 positive cells since CD34 is 
associated with cancer stem cells in MDS, and monocytes dysplastic 
derives thereof. A high PD-L1 expression on monocytes has been 
correlated with poor survival in several malignancies [29,30]. 

2.5. NK panel 

Natural killer (NK) cells are lymphoid innate immune cells, capable 
of targeting virally infected and malignant cells, that downregulates 
HLA-expression in order to hide from T cells [31]. While NKT cells are 
similar to NK cells but utilize a specialized T cells receptor to recognize 
lipid fragments bound to the HLA like molecule CD1d [32]. 

In the NK panel, we distinguished NK cells by measuring the 
expression of CD16 and CD56. NK cells are CD3− and CD19− , and can be 
either CD56bright CD16dim, CD56bright CD16− , or CD56dim CD16bright. 
They were then further subtyped by whether they express other markers 
associated with increased cytotoxicity, such as increased CD38, CD69, 
CD107a, or are double positive for CD45RA and CD45RO (Fig. 10) [31]. 
NKT cells were stained using tetramerized CD1d molecules loaded with 
alpha-galactosylceramide (alpha-gal-cer), a glycolipid which invariant 
NKT cells specifically bind [32]. The NKT cells were then subdivided 
into being either CD4, CD8, or double negative. We also included an 
antibody for CD19 to quantify the presence of B cells. 

We stained bone marrow and PBMC from a patient with MDS and 
PBMC from a HD with the NK panel in our example. There was a pre
dominance of CD56dim CD16hi NK cells in all samples (Fig. 11), and these 

Fig. 8. Myeloid panel gated on PBMC from a patient with MDS. PD-L1 is measured on all subpopulations.  
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cells expressed more CD69 in the MDS patient than in the HD. Only few 
NK cells expressed CD107a or were double positive for CD45RA and 
CD45RO. NKT cells were detectable in the HD at a frequency of 0.6% of 
CD3 positive cells but were not present in the MDS patient. 

2.6. Explorative analysis and data visualization 

Researchers should always have a pre-determined hypothesis, or 
specific scientific questions, that the experiments are designed to 
answer. Statistical comparison of two or more groups, e.g., before vs. 
after treatment or responder vs. non-responder, can then be performed 
for either the median fluorescence intensity (MFI) of a marker to 

compare levels of expression or by comparing the number of positive 
cells in subpopulations relative to their respective parent population. 
The full potential of multicolor flow cytometry, however, lies in its 
ability to perform explorative studies, which can reveal novel sub
populations and important correlations that were unthought-of before 
the experiment was conducted. To detect such correlations, researchers 
can use unsupervised clustering together with dimensionality reduction 
techniques to visualize and dissect the multiparametric datasets, e.g., t- 
distributed stochastic neighbor embedding (t-SNE) [33] or Uniform 
Manifold Approximation and Projection (UMAP) [34]. In contrast to 
supervised clustering methods, unsupervised clustering (e.g., FlowSOM 
[35]) is not limited by the user’s own experience with flow cytometry 

Fig. 9. Barplot showing (a) frequency of myeloid derived suppressor cells, dendritic cells, hematopoietic stem cells (CD34) and monocytes. (b) Expression of PDL1 on 
various myeloid cell populations. Red and orange bars are bone marrow and PBMC from a patient with MDS, while blue bars are PBMC from a healthy donor. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 10. NK panel gated on PBMC. Lineage gating and NK subtype plots are from a patients with MDS, while NKT plots are from a healthy donor PBMC. CD45RA 
CD45RO double positive cells, CD38, CD69 and CD107a is measured on all subpopulations. 

Fig. 11. Barplot showing frequency of subpopulations for NK, NKT and B cells.  
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Fig. 12. Unsupervised clustering of the 
phenotype panel using FlowSOM on 
concatenated T cells in FlowJo, to detect a 
total of 16 subpopulations (Pop0-Pop7) on 
(a) CD4 cells and (b) CD8 cells. Two samples 
from a patient with MDS (PBMC and BM) 
and one PBMC sample from a healthy donor 
were included in the concatenation. Figure a 
and b show heat map (FlowSOM plugin 
output) of the relative fluorescent intensity 
for the markers associated with the identi
fied CD4 and CD8 subpopulations. Dimen
sionality reduction was then performed 
using UMAP on the concatenated cells to 
visually inspect differences in density of 
clusters among (c) PBMC and (d) BM from 
an MDS patient, and (e) PBMC from a 
healthy donor. The identified CD4 and CD8 
subpopulations from the FlowSOM analysis, 
were then overlaid the UMAP visualizations 
to create an overview of their prevalence in 
the three samples. Colors of clusters repre
sent the subpopulations seen in figure a and 
b. Figure f is showing frequency, as per
centage of CD4 or CD8 cells, of the identified 
CD4 and CD8 subpopulations from the 
FlowSOM analysis. Red and orange bars are 
the MDS bone marrow and PBMC samples, 
while blue bars are healthy donor PBMC. 
(For interpretation of the references to color 
in this figure legend, the reader is referred to 
the Web version of this article.)   
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gating and theoretical knowledge of how cell subtypes are defined [36]. 
We performed unsupervised clustering on the two MDS samples and 

a healthy donor (Fig. 12) using the FlowSOM [35] plugin in FlowJo. For 
the phenotype panel, the three samples were concatenated (data 
aggregated into one file) on their respective CD3 gate, and FlowSOM run 
using the default settings with 8 clusters for both CD4 and CD8 cells. 
UMAP was used to create clustering maps for the three samples, where 
the FlowSOM populations could be superimposed, generating a visual 
overview of all identified CD4 and CD8 clusters and their dominance in 
each sample. 

The clustering method identified that in the CD8 compartment, TE 
cells (CD45RA + CCR7-) and EM cells (CD45RA- CCR7-) were more 
frequent in the MDS patient, while naïve (CD45RA + CCR7+) and CM 
cells (CD45RA- CCR7+) were less frequent compared to the HD, which 
corresponds to the findings based on our manual gating. It also identi
fied a CD8 EM population (CD8-pop1) that was high in both CD69 and 
PD-1. This double-positive subpopulation accounted for 24% of CD8 
cells in the MDS bone marrow sample, but only 1–2% in the two PBMC 
samples, which was overlooked using the manual gating. In the CD4 
compartment, CM and EM cells double-positive for CD69 and PD-1 
(CD4-pop1 and CD4-pop2) were more dominant in the BM sample 
compared to the two PBMC samples. Similar unsupervised clustering 
analyses for the Treg, myeloid, and NK panels are shown in supple
mentary figures 2-4. 

3. Discussion 

We have presented four flow cytometry panels for analyzing immune 
cell compartments and a workflow for constructing new panels. Multi
color flow cytometry is a powerful tool since substantial multi
parametric data can be collected for each cell (event), generating large 
amounts of data from each experiment. However, flow cytometry is 
prone to technical errors, spectral overlap, and subjective data inter
pretation, which can create biases in the data analyses. Furthermore, 
limitations, such as inter-experiment variability and poor data resolu
tion when many colors are used simultaneously, should be addressed. If 
the researcher applies a systematic workflow for pairing colors to 
markers, optimized for the equipment intended to run the experiments 
(e.g., generating a SSM to guide color selection), many limitations can be 
overcome. We also address quality control methods, titration of anti
bodies, compensation, and staining of cells for obtaining optimal results. 
To handle the vast amount of data generated by multicolor flow 
cytometry, unsupervised clustering techniques are valuable tools for 
identifying significant subpopulations of immune cells while avoiding 
gating bias. 

4. Materials and methods 

4.1. FACS machine configuration 

LSR Fortessa from BD bioscience (Franklin Lakes, NJ, USA) with a 
five laser setup (consisting of 488 nm blue, 460 nm red, 532 nm green, 
405 nm violet, and 355 nm UV). See supplementary figure 1 for filter 
configuration. The SSM was calculated in FlowJo v10 software after 
acquiring single stained compensation beads for all the colors available 
for the laser setup and filter configuration on our FACS machine. 

4.2. Staining cells 

First, antibody-mixtures for each of the panels were made in advance 
and stored dark at 4 ◦C. To make the antibody-mixture, the volumes of 
each antibody selected from previous antibody titration experiments 
were added to a tube, times the number of samples needed to be stained. 
An additional 50 μl of BD brilliant stain buffer (BD; 566349) was added 
per sample, and lastly, the mixture was topped up with PBS to reach a 
total volume of 85 μl/sample. Near-IR viability dye (Thermo Fisher 

Invitrogen™; L34975) and CD1d tetramers (Tetramer Shop; HCD1d- 
001) were not added to the master-mixtures but added separately to 
the cells when staining. In the T regulatory panel, only surface markers 
were added to the mixtures. Intracellular markers (FoxP3 and Ki67) 
were added later in the process when cells had been fixed and 
permeabilized. 

We thawed PBMC and bone marrow cells in 37◦ RPMI 1640 (Thermo 
Fisher, Gibco), with 10% fetal calf serum (Thermo Fisher, Gibco) added. 
After thawing, the cells were incubated for 10 min in 10% human serum 
(Sigma Aldrich) to saturate FC-receptors on cells and minimize unspe
cific binding of antibodies, which is of particular importance if staining 
myeloid cells. Afterward, cells were counted and split into four 96-well 
plates, with approximately one to five million cells per staining, and 
washed twice in FACS buffer (PBS + 2% fetal calf serum). Next, the 
supernatant was removed, leaving approximately 15 μl of cells in each 
well. Cells were stained by adding 85 μl of the antibody-mixture to each 
well. NIR was then added to all samples and CD1d tetramers to the cells 
stained with the NK/NKT panel. All wells were mixed, and cells were 
incubated for 30 min on ice. After incubation, cells were washed twice 
with FACS buffer and then fixed with 1% PFA or acquired immediately 
at the FACS machine. The cells stained with the T regulatory panel were 
fixed and permeabilized using BD TF permeabilization kit (BD Phar
mingen; 562574), after which the intracellular antibodies were added to 
the cells. Following 30 min of incubation and washing with perm/wash 
buffer, the cells were resuspended in FACS buffer and ready for analysis. 

When the phenotype panel was combined with ICS for analyzing T 
cells that produce cytokines when presented to specific antigens, the 
thawed cells were first stimulated for 12 h in media containing the 
peptides of interest at a concentration of 1 μg/ml, Brefeldin A (BD 
GolgiPlug, 555029), and 5% human serum. During stimulation, a 
CD107a antibody (Biolegend, 328640) was added to detect degranula
tion. Following stimulation and washing steps, the cells were stained 
with all markers from the phenotype panel, except CXCR3, CCR4, and 
CCR6, and then fixed and permeabilized using BD Fixation/Per
meabilization kit (BD Cytofix/Cytoperm; 554714). After permeabiliza
tion, the cells were stained with antibodies that bind intracellular 
interferon gamma (BD, 562016) and tumor necrosis factor alpha (BD, 
563418), and then analyzed in the FACS machine. 

For combining phenotyping with MHC tetramer staining, to char
acterize T cells that bind to specific antigens, the thawed cells were first 
stained with tetramerized MHC-molecules loaded with the specific 
peptides of interest and tagged with fluorescent molecules. The anti
bodies for the phenotype panel, except CXCR3, CCR4, and CCR6, were 
then added to the cells. 
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